MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. EN AC-43000 Aluminum

EN 1.8880 steel belongs to the iron alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
60 to 94
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 16
1.1 to 2.5
Fatigue Strength, MPa 470
68 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 830
180 to 270
Tensile Strength: Yield (Proof), MPa 720
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 260
540
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
38
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.9
7.8
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 54
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
66 to 360
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 29
20 to 29
Strength to Weight: Bending, points 25
28 to 36
Thermal Diffusivity, mm2/s 11
60
Thermal Shock Resistance, points 24
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
87 to 90.8
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 1.5
0
Copper (Cu), % 0 to 0.3
0 to 0.050
Iron (Fe), % 91.9 to 100
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.7
0 to 0.45
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0 to 0.050
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
9.0 to 11
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.050
0 to 0.15
Vanadium (V), % 0 to 0.12
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15