MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. N06920 Nickel

EN 1.8880 steel belongs to the iron alloys classification, while N06920 nickel belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 16
39
Fatigue Strength, MPa 470
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
82
Shear Strength, MPa 510
500
Tensile Strength: Ultimate (UTS), MPa 830
730
Tensile Strength: Yield (Proof), MPa 720
270

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Maximum Temperature: Mechanical, °C 420
990
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 40
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
55
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.9
9.4
Embodied Energy, MJ/kg 26
130
Embodied Water, L/kg 54
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 29
24
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 11
2.8
Thermal Shock Resistance, points 24
19

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
17 to 20
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
8.0 to 10
Nickel (Ni), % 0 to 2.5
36.9 to 53.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
1.0 to 3.0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0