MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. S40910 Stainless Steel

Both EN 1.8880 steel and S40910 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
23
Fatigue Strength, MPa 470
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 510
270
Tensile Strength: Ultimate (UTS), MPa 830
430
Tensile Strength: Yield (Proof), MPa 720
190

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 420
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.0
Embodied Energy, MJ/kg 26
28
Embodied Water, L/kg 54
94

Common Calculations

PREN (Pitting Resistance) 2.0
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 24
16

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
10.5 to 11.7
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
85 to 89.5
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0 to 0.5
Niobium (Nb), % 0 to 0.060
0 to 0.17
Nitrogen (N), % 0 to 0.015
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0 to 0.050
0 to 0.5
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0