MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. S64512 Stainless Steel

Both EN 1.8880 steel and S64512 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
17
Fatigue Strength, MPa 470
540
Impact Strength: V-Notched Charpy, J 68
47
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 510
700
Tensile Strength: Ultimate (UTS), MPa 830
1140
Tensile Strength: Yield (Proof), MPa 720
890

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 420
750
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
3.3
Embodied Energy, MJ/kg 26
47
Embodied Water, L/kg 54
110

Common Calculations

PREN (Pitting Resistance) 2.0
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
2020
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
40
Strength to Weight: Bending, points 25
31
Thermal Diffusivity, mm2/s 11
7.5
Thermal Shock Resistance, points 24
42

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.080 to 0.15
Chromium (Cr), % 0 to 1.5
11 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
80.6 to 84.7
Manganese (Mn), % 0 to 1.7
0.5 to 0.9
Molybdenum (Mo), % 0 to 0.7
1.5 to 2.0
Nickel (Ni), % 0 to 2.5
2.0 to 3.0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0.010 to 0.050
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0.25 to 0.4
Zirconium (Zr), % 0 to 0.15
0