MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. S66286 Stainless Steel

Both EN 1.8880 steel and S66286 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
17 to 40
Fatigue Strength, MPa 470
240 to 410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Shear Strength, MPa 510
420 to 630
Tensile Strength: Ultimate (UTS), MPa 830
620 to 1020
Tensile Strength: Yield (Proof), MPa 720
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 420
920
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
6.0
Embodied Energy, MJ/kg 26
87
Embodied Water, L/kg 54
170

Common Calculations

PREN (Pitting Resistance) 2.0
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
22 to 36
Strength to Weight: Bending, points 25
20 to 28
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 24
13 to 22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0 to 0.0050
0.0010 to 0.010
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 1.5
13.5 to 16
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
49.1 to 59.5
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
1.0 to 1.5
Nickel (Ni), % 0 to 2.5
24 to 27
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.050
1.9 to 2.4
Vanadium (V), % 0 to 0.12
0.1 to 0.5
Zirconium (Zr), % 0 to 0.15
0