MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. ACI-ASTM CA6NM Steel

Both EN 1.8888 steel and ACI-ASTM CA6NM steel are iron alloys. They have 85% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is ACI-ASTM CA6NM steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
17
Fatigue Strength, MPa 470
380
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 830
850
Tensile Strength: Yield (Proof), MPa 720
620

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 420
770
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.5
Embodied Energy, MJ/kg 26
34
Embodied Water, L/kg 54
110

Common Calculations

PREN (Pitting Resistance) 2.0
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
30
Strength to Weight: Bending, points 25
26
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 24
31

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.060
Chromium (Cr), % 0 to 1.5
11.5 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
78.4 to 84.6
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0.4 to 1.0
Nickel (Ni), % 0 to 2.5
3.5 to 4.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0