MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. ACI-ASTM CN3M Steel

Both EN 1.8888 steel and ACI-ASTM CN3M steel are iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
34
Fatigue Strength, MPa 470
150
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 830
500
Tensile Strength: Yield (Proof), MPa 720
190

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
31
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.9
5.9
Embodied Energy, MJ/kg 26
80
Embodied Water, L/kg 54
200

Common Calculations

PREN (Pitting Resistance) 2.0
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
17
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 24
11

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
20 to 22
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
42.4 to 52.5
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
4.5 to 5.5
Nickel (Ni), % 0 to 2.5
23 to 27
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0