MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. EN 1.4945 Stainless Steel

Both EN 1.8888 steel and EN 1.4945 stainless steel are iron alloys. They have 65% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
19 to 34
Fatigue Strength, MPa 470
230 to 350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 510
430 to 460
Tensile Strength: Ultimate (UTS), MPa 830
640 to 740
Tensile Strength: Yield (Proof), MPa 720
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 420
920
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
14
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
30
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.9
5.0
Embodied Energy, MJ/kg 26
73
Embodied Water, L/kg 54
150

Common Calculations

PREN (Pitting Resistance) 2.0
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
210 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
22 to 25
Strength to Weight: Bending, points 25
20 to 22
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 24
14 to 16

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.040 to 0.1
Chromium (Cr), % 0 to 1.5
15.5 to 17.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
57.9 to 65.7
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
15.5 to 17.5
Niobium (Nb), % 0 to 0.060
0.4 to 1.2
Nitrogen (N), % 0 to 0.015
0.060 to 0.14
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.8
0.3 to 0.6
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0