MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. EN 1.5414 Steel

Both EN 1.8888 steel and EN 1.5414 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
22
Fatigue Strength, MPa 470
250 to 270
Impact Strength: V-Notched Charpy, J 110
46
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 510
350 to 370
Tensile Strength: Ultimate (UTS), MPa 830
550 to 580
Tensile Strength: Yield (Proof), MPa 720
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 420
410
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
44
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
2.6
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
1.6
Embodied Energy, MJ/kg 26
21
Embodied Water, L/kg 54
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
320 to 370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
19 to 20
Strength to Weight: Bending, points 25
19 to 20
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 24
16 to 17

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 0 to 1.5
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 91.9 to 100
96.4 to 98.7
Manganese (Mn), % 0 to 1.7
0.9 to 1.5
Molybdenum (Mo), % 0 to 0.7
0.45 to 0.6
Nickel (Ni), % 0 to 2.5
0 to 0.3
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0 to 0.012
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.0050
0 to 0.0050
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0