MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. EN 1.7720 Steel

Both EN 1.8888 steel and EN 1.7720 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is EN 1.7720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
19
Fatigue Strength, MPa 470
230
Impact Strength: V-Notched Charpy, J 110
30
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 830
590
Tensile Strength: Yield (Proof), MPa 720
340

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 420
410
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
2.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.2
Embodied Energy, MJ/kg 26
30
Embodied Water, L/kg 54
51

Common Calculations

PREN (Pitting Resistance) 2.0
2.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
97
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
21
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 24
17

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.1 to 0.15
Chromium (Cr), % 0 to 1.5
0.3 to 0.5
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 91.9 to 100
96.6 to 98.6
Manganese (Mn), % 0 to 1.7
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.7
0.4 to 0.6
Nickel (Ni), % 0 to 2.5
0 to 0.4
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 0.45
Sulfur (S), % 0 to 0.0050
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0.22 to 0.3
Zirconium (Zr), % 0 to 0.15
0