MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. S32205 Stainless Steel

Both EN 1.8888 steel and S32205 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
28
Fatigue Strength, MPa 470
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 510
480
Tensile Strength: Ultimate (UTS), MPa 830
740
Tensile Strength: Yield (Proof), MPa 720
510

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 420
1070
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
3.7
Embodied Energy, MJ/kg 26
50
Embodied Water, L/kg 54
160

Common Calculations

PREN (Pitting Resistance) 2.0
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
630
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
26
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 24
20

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
22 to 23
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
63.7 to 70.4
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
3.0 to 3.5
Nickel (Ni), % 0 to 2.5
4.5 to 6.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0.14 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0