MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. S36200 Stainless Steel

Both EN 1.8888 steel and S36200 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
3.4 to 4.6
Fatigue Strength, MPa 470
450 to 570
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 510
680 to 810
Tensile Strength: Ultimate (UTS), MPa 830
1180 to 1410
Tensile Strength: Yield (Proof), MPa 720
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 420
820
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 26
40
Embodied Water, L/kg 54
120

Common Calculations

PREN (Pitting Resistance) 2.0
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
2380 to 3930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
42 to 50
Strength to Weight: Bending, points 25
32 to 36
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 24
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.050
Chromium (Cr), % 0 to 1.5
14 to 14.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
75.4 to 79.5
Manganese (Mn), % 0 to 1.7
0 to 0.5
Molybdenum (Mo), % 0 to 0.7
0 to 0.3
Nickel (Ni), % 0 to 2.5
6.5 to 7.0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 0.3
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.050
0.6 to 0.9
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0