MakeItFrom.com
Menu (ESC)

EN 1.8891 Steel vs. EN 1.4003 Stainless Steel

Both EN 1.8891 steel and EN 1.4003 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8891 steel and the bottom bar is EN 1.4003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
22
Fatigue Strength, MPa 330
210
Impact Strength: V-Notched Charpy, J 40
67
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 380
340
Tensile Strength: Ultimate (UTS), MPa 610
540
Tensile Strength: Yield (Proof), MPa 480
320

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
720
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.9
Embodied Energy, MJ/kg 24
27
Embodied Water, L/kg 51
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 630
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 12
6.7
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 0.3
10.5 to 12.5
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 99
83.9 to 89.2
Manganese (Mn), % 1.0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.8
0.3 to 1.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0 to 0.030
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0