MakeItFrom.com
Menu (ESC)

EN 1.8895 Steel vs. ASTM Grade HH Steel

Both EN 1.8895 steel and ASTM grade HH steel are iron alloys. They have 60% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8895 steel and the bottom bar is ASTM grade HH steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 26
11
Fatigue Strength, MPa 220
150
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 400
580
Tensile Strength: Yield (Proof), MPa 300
270

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
14
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
20
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
3.7
Embodied Energy, MJ/kg 21
53
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
53
Resilience: Unit (Modulus of Resilience), kJ/m3 240
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 13
3.8
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.13
0.2 to 0.5
Chromium (Cr), % 0
24 to 28
Iron (Fe), % 97 to 99.98
52.9 to 64.8
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 0 to 0.3
11 to 14
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0