MakeItFrom.com
Menu (ESC)

EN 1.8895 Steel vs. SAE-AISI 1541 Steel

Both EN 1.8895 steel and SAE-AISI 1541 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8895 steel and the bottom bar is SAE-AISI 1541 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 26
11 to 17
Fatigue Strength, MPa 220
260 to 420
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 260
440 to 480
Tensile Strength: Ultimate (UTS), MPa 400
720 to 790
Tensile Strength: Yield (Proof), MPa 300
390 to 680

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.4
Embodied Energy, MJ/kg 21
19
Embodied Water, L/kg 47
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
78 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
410 to 1250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 14
25 to 28
Strength to Weight: Bending, points 15
23 to 24
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 12
23 to 25

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.13
0.36 to 0.44
Iron (Fe), % 97 to 99.98
97.8 to 98.3
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0