EN 1.8895 Steel vs. SAE-AISI M10 Steel
Both EN 1.8895 steel and SAE-AISI M10 steel are iron alloys. They have 85% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is EN 1.8895 steel and the bottom bar is SAE-AISI M10 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
76 |
Tensile Strength: Ultimate (UTS), MPa | 400 | |
740 to 2170 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
270 |
Melting Completion (Liquidus), °C | 1460 | |
1520 |
Melting Onset (Solidus), °C | 1420 | |
1470 |
Specific Heat Capacity, J/kg-K | 470 | |
460 |
Thermal Conductivity, W/m-K | 49 | |
31 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.2 | |
14 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.6 | |
8.3 |
Embodied Energy, MJ/kg | 21 | |
120 |
Embodied Water, L/kg | 47 | |
100 |
Common Calculations
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 14 | |
26 to 76 |
Strength to Weight: Bending, points | 15 | |
23 to 47 |
Thermal Diffusivity, mm2/s | 13 | |
8.5 |
Thermal Shock Resistance, points | 12 | |
23 to 68 |
Alloy Composition
Aluminum (Al), % | 0.020 to 0.060 | |
0 |
Carbon (C), % | 0 to 0.13 | |
0.84 to 1.1 |
Chromium (Cr), % | 0 | |
3.8 to 4.5 |
Copper (Cu), % | 0 | |
0 to 0.25 |
Iron (Fe), % | 97 to 99.98 | |
82.3 to 85.6 |
Manganese (Mn), % | 0 to 1.5 | |
0.1 to 0.4 |
Molybdenum (Mo), % | 0 to 0.2 | |
7.8 to 8.5 |
Nickel (Ni), % | 0 to 0.3 | |
0 to 0.3 |
Niobium (Nb), % | 0 to 0.050 | |
0 |
Nitrogen (N), % | 0 to 0.020 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.030 |
Silicon (Si), % | 0 to 0.5 | |
0.2 to 0.45 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |
Titanium (Ti), % | 0 to 0.050 | |
0 |
Vanadium (V), % | 0 to 0.080 | |
1.8 to 2.2 |