MakeItFrom.com
Menu (ESC)

EN 1.8895 Steel vs. N08024 Nickel

EN 1.8895 steel belongs to the iron alloys classification, while N08024 nickel belongs to the nickel alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8895 steel and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 26
34
Fatigue Strength, MPa 220
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 260
410
Tensile Strength: Ultimate (UTS), MPa 400
620
Tensile Strength: Yield (Proof), MPa 300
270

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
990
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 49
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
41
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.6
7.2
Embodied Energy, MJ/kg 21
99
Embodied Water, L/kg 47
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.13
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 97 to 99.98
26.6 to 38.4
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.2
3.5 to 5.0
Nickel (Ni), % 0 to 0.3
35 to 40
Niobium (Nb), % 0 to 0.050
0.15 to 0.35
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0