MakeItFrom.com
Menu (ESC)

EN 1.8895 Steel vs. S30600 Stainless Steel

Both EN 1.8895 steel and S30600 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8895 steel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 26
45
Fatigue Strength, MPa 220
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 260
430
Tensile Strength: Ultimate (UTS), MPa 400
610
Tensile Strength: Yield (Proof), MPa 300
270

Thermal Properties

Latent Heat of Fusion, J/g 250
350
Maximum Temperature: Mechanical, °C 400
950
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1420
1330
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 49
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
19
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 1.6
3.6
Embodied Energy, MJ/kg 21
51
Embodied Water, L/kg 47
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
220
Resilience: Unit (Modulus of Resilience), kJ/m3 240
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14
22
Strength to Weight: Bending, points 15
21
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.13
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97 to 99.98
58.9 to 65.3
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.2
0 to 0.2
Nickel (Ni), % 0 to 0.3
14 to 15.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.5
3.7 to 4.3
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0