MakeItFrom.com
Menu (ESC)

EN 1.8895 Steel vs. S32803 Stainless Steel

Both EN 1.8895 steel and S32803 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8895 steel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 26
18
Fatigue Strength, MPa 220
350
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 260
420
Tensile Strength: Ultimate (UTS), MPa 400
680
Tensile Strength: Yield (Proof), MPa 300
560

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
19
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
3.7
Embodied Energy, MJ/kg 21
53
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
760
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14
25
Strength to Weight: Bending, points 15
22
Thermal Diffusivity, mm2/s 13
4.4
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.13
0 to 0.015
Chromium (Cr), % 0
28 to 29
Iron (Fe), % 97 to 99.98
62.9 to 67.1
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.2
1.8 to 2.5
Nickel (Ni), % 0 to 0.3
3.0 to 4.0
Niobium (Nb), % 0 to 0.050
0.15 to 0.5
Nitrogen (N), % 0 to 0.020
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.0035
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0