MakeItFrom.com
Menu (ESC)

EN 1.8896 Steel vs. S44625 Stainless Steel

Both EN 1.8896 steel and S44625 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8896 steel and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24
22
Fatigue Strength, MPa 280
240
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 330
370
Tensile Strength: Ultimate (UTS), MPa 510
590
Tensile Strength: Yield (Proof), MPa 390
360

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 21
39
Embodied Water, L/kg 47
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 400
310
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.14
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 97 to 99.98
69.4 to 74.3
Manganese (Mn), % 0 to 1.5
0 to 0.4
Molybdenum (Mo), % 0 to 0.2
0.75 to 1.5
Nickel (Ni), % 0 to 0.3
0 to 0.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.1
0