MakeItFrom.com
Menu (ESC)

EN 1.8898 Steel vs. ACI-ASTM CF16Fa Steel

Both EN 1.8898 steel and ACI-ASTM CF16Fa steel are iron alloys. They have 69% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8898 steel and the bottom bar is ACI-ASTM CF16Fa steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 600
540
Tensile Strength: Yield (Proof), MPa 490
230

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
980
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
17
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
3.3
Embodied Energy, MJ/kg 22
47
Embodied Water, L/kg 48
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 650
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 13
4.2
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.16
0 to 0.16
Chromium (Cr), % 0
18 to 21
Iron (Fe), % 96.7 to 99.98
62.1 to 72.4
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.2
0.4 to 0.8
Nickel (Ni), % 0 to 0.3
9.0 to 12
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 2.0
Sulfur (S), % 0 to 0.030
0.2 to 0.4
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0