MakeItFrom.com
Menu (ESC)

EN 1.8898 Steel vs. ACI-ASTM CG3M Steel

Both EN 1.8898 steel and ACI-ASTM CG3M steel are iron alloys. They have 66% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8898 steel and the bottom bar is ACI-ASTM CG3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 600
580
Tensile Strength: Yield (Proof), MPa 490
270

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1020
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
20
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
4.1
Embodied Energy, MJ/kg 22
56
Embodied Water, L/kg 48
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 650
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 13
4.1
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.16
0 to 0.030
Chromium (Cr), % 0
18 to 21
Iron (Fe), % 96.7 to 99.98
58.9 to 70
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.2
3.0 to 4.0
Nickel (Ni), % 0 to 0.3
9.0 to 13
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0