MakeItFrom.com
Menu (ESC)

EN 1.8898 Steel vs. S17600 Stainless Steel

Both EN 1.8898 steel and S17600 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8898 steel and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
8.6 to 11
Fatigue Strength, MPa 330
300 to 680
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 370
560 to 880
Tensile Strength: Ultimate (UTS), MPa 600
940 to 1490
Tensile Strength: Yield (Proof), MPa 490
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
890
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.9
Embodied Energy, MJ/kg 22
42
Embodied Water, L/kg 48
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 650
850 to 4390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
34 to 54
Strength to Weight: Bending, points 20
28 to 37
Thermal Diffusivity, mm2/s 13
4.1
Thermal Shock Resistance, points 18
31 to 50

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.4
Carbon (C), % 0 to 0.16
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Iron (Fe), % 96.7 to 99.98
71.3 to 77.6
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.3
6.0 to 7.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.050
0.4 to 1.2
Vanadium (V), % 0 to 0.12
0