MakeItFrom.com
Menu (ESC)

EN 1.8898 Steel vs. S31266 Stainless Steel

Both EN 1.8898 steel and S31266 stainless steel are iron alloys. They have 42% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8898 steel and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 18
40
Fatigue Strength, MPa 330
400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Shear Strength, MPa 370
590
Tensile Strength: Ultimate (UTS), MPa 600
860
Tensile Strength: Yield (Proof), MPa 490
470

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 49
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
37
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.6
6.5
Embodied Energy, MJ/kg 22
89
Embodied Water, L/kg 48
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
290
Resilience: Unit (Modulus of Resilience), kJ/m3 650
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.16
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 96.7 to 99.98
34.1 to 46
Manganese (Mn), % 0 to 1.7
2.0 to 4.0
Molybdenum (Mo), % 0 to 0.2
5.2 to 6.2
Nickel (Ni), % 0 to 0.3
21 to 24
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0.35 to 0.6
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0 to 0.12
0