MakeItFrom.com
Menu (ESC)

EN 1.8902 Steel vs. SAE-AISI 1064 Steel

Both EN 1.8902 steel and SAE-AISI 1064 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8902 steel and the bottom bar is SAE-AISI 1064 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
12 to 13
Fatigue Strength, MPa 290
300
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 380
430 to 440
Tensile Strength: Ultimate (UTS), MPa 600
720 to 730
Tensile Strength: Yield (Proof), MPa 420
470 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
51
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.4
Embodied Energy, MJ/kg 24
19
Embodied Water, L/kg 51
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
79 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 470
600 to 630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
25 to 26
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 18
25

Alloy Composition

Aluminum (Al), % 0 to 0.015
0
Carbon (C), % 0 to 0.22
0.6 to 0.7
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 95 to 99.05
98.4 to 98.9
Manganese (Mn), % 1.0 to 1.8
0.5 to 0.8
Molybdenum (Mo), % 0 to 0.13
0
Nickel (Ni), % 0 to 0.85
0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.65
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.22
0