MakeItFrom.com
Menu (ESC)

EN 1.8902 Steel vs. N07776 Nickel

EN 1.8902 steel belongs to the iron alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.8902 steel and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
39
Fatigue Strength, MPa 290
220
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
79
Shear Strength, MPa 380
470
Tensile Strength: Ultimate (UTS), MPa 600
700
Tensile Strength: Yield (Proof), MPa 420
270

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 410
970
Melting Completion (Liquidus), °C 1460
1550
Melting Onset (Solidus), °C 1420
1500
Specific Heat Capacity, J/kg-K 470
430
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
85
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.8
15
Embodied Energy, MJ/kg 24
210
Embodied Water, L/kg 51
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 470
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 0 to 0.015
0 to 2.0
Carbon (C), % 0 to 0.22
0 to 0.030
Chromium (Cr), % 0 to 0.35
12 to 22
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 95 to 99.05
0 to 24.5
Manganese (Mn), % 1.0 to 1.8
0 to 1.0
Molybdenum (Mo), % 0 to 0.13
9.0 to 15
Nickel (Ni), % 0 to 0.85
50 to 60
Niobium (Nb), % 0 to 0.060
4.0 to 6.0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.65
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0 to 0.060
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Vanadium (V), % 0 to 0.22
0