MakeItFrom.com
Menu (ESC)

EN 1.8915 Steel vs. ASTM A182 Grade F24

Both EN 1.8915 steel and ASTM A182 grade F24 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8915 steel and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
23
Fatigue Strength, MPa 340
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 400
420
Tensile Strength: Ultimate (UTS), MPa 640
670
Tensile Strength: Yield (Proof), MPa 490
460

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
4.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.3
Embodied Energy, MJ/kg 24
33
Embodied Water, L/kg 51
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 640
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0 to 0.2
0.050 to 0.1
Chromium (Cr), % 0 to 0.3
2.2 to 2.6
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
94.5 to 96.1
Manganese (Mn), % 1.1 to 1.7
0.3 to 0.7
Molybdenum (Mo), % 0 to 0.1
0.9 to 1.1
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0 to 0.12
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.6
0.15 to 0.45
Sulfur (S), % 0 to 0.0080
0 to 0.010
Titanium (Ti), % 0 to 0.030
0.060 to 0.1
Vanadium (V), % 0 to 0.2
0.2 to 0.3