MakeItFrom.com
Menu (ESC)

EN 1.8915 Steel vs. C19200 Copper

EN 1.8915 steel belongs to the iron alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8915 steel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19
2.0 to 35
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 400
190 to 300
Tensile Strength: Ultimate (UTS), MPa 640
280 to 530
Tensile Strength: Yield (Proof), MPa 490
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 46
240
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 24
41
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 640
42 to 1120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
8.8 to 17
Strength to Weight: Bending, points 21
11 to 16
Thermal Diffusivity, mm2/s 12
69
Thermal Shock Resistance, points 19
10 to 19

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.7
98.5 to 99.19
Iron (Fe), % 95.2 to 98.9
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 1.1 to 1.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.025
0.010 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2