MakeItFrom.com
Menu (ESC)

EN 1.8918 Steel vs. ACI-ASTM CH20 Steel

Both EN 1.8918 steel and ACI-ASTM CH20 steel are iron alloys. They have 62% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8918 steel and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
38
Fatigue Strength, MPa 330
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 640
610
Tensile Strength: Yield (Proof), MPa 490
350

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
14
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.7
Embodied Energy, MJ/kg 24
53
Embodied Water, L/kg 51
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 640
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 12
3.7
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 0 to 0.3
22 to 26
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
54.7 to 66
Manganese (Mn), % 1.1 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0 to 0.8
12 to 15
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 2.0
Sulfur (S), % 0 to 0.0050
0 to 0.040
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0