MakeItFrom.com
Menu (ESC)

EN 1.8918 Steel vs. EN 1.0420 Cast Steel

Both EN 1.8918 steel and EN 1.0420 cast steel are iron alloys. Both are furnished in the normalized condition. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8918 steel and the bottom bar is EN 1.0420 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
28
Fatigue Strength, MPa 330
170
Impact Strength: V-Notched Charpy, J 88
31
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 640
460
Tensile Strength: Yield (Proof), MPa 490
220

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
1.7
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 24
18
Embodied Water, L/kg 51
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 640
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
16
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
99.935 to 100
Manganese (Mn), % 1.1 to 1.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0