MakeItFrom.com
Menu (ESC)

EN 1.8918 Steel vs. EN 1.4303 Stainless Steel

Both EN 1.8918 steel and EN 1.4303 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8918 steel and the bottom bar is EN 1.4303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
13 to 49
Fatigue Strength, MPa 330
220 to 320
Impact Strength: V-Notched Charpy, J 88
91 to 98
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 400
420 to 540
Tensile Strength: Ultimate (UTS), MPa 640
590 to 900
Tensile Strength: Yield (Proof), MPa 490
230 to 560

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
17
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.2
Embodied Energy, MJ/kg 24
46
Embodied Water, L/kg 51
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 640
140 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
21 to 32
Strength to Weight: Bending, points 21
20 to 26
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19
13 to 20

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0 to 0.060
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
64.8 to 72
Manganese (Mn), % 1.1 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.8
11 to 13
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0