MakeItFrom.com
Menu (ESC)

EN 1.8918 Steel vs. EN 1.7106 Steel

Both EN 1.8918 steel and EN 1.7106 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.8918 steel and the bottom bar is EN 1.7106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200 to 500
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 640
660 to 2020

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
2.1
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 24
20
Embodied Water, L/kg 51
47

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
24 to 73
Strength to Weight: Bending, points 21
22 to 46
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 19
20 to 61

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0.52 to 0.6
Chromium (Cr), % 0 to 0.3
0.2 to 0.45
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
95.9 to 97
Manganese (Mn), % 1.1 to 1.7
0.7 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.6
1.6 to 2.0
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0