EN 1.8918 Steel vs. EN 1.7383 Steel
Both EN 1.8918 steel and EN 1.7383 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is EN 1.8918 steel and the bottom bar is EN 1.7383 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 | |
170 to 180 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 19 | |
20 to 23 |
Fatigue Strength, MPa | 330 | |
210 to 270 |
Impact Strength: V-Notched Charpy, J | 88 | |
38 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
74 |
Shear Strength, MPa | 400 | |
350 to 380 |
Tensile Strength: Ultimate (UTS), MPa | 640 | |
560 to 610 |
Tensile Strength: Yield (Proof), MPa | 490 | |
300 to 400 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
260 |
Maximum Temperature: Mechanical, °C | 400 | |
460 |
Melting Completion (Liquidus), °C | 1460 | |
1470 |
Melting Onset (Solidus), °C | 1420 | |
1430 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 46 | |
39 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.5 | |
7.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.6 | |
8.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.5 | |
3.9 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.7 | |
1.8 |
Embodied Energy, MJ/kg | 24 | |
23 |
Embodied Water, L/kg | 51 | |
59 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 640 | |
240 to 420 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 23 | |
20 to 22 |
Strength to Weight: Bending, points | 21 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 12 | |
11 |
Thermal Shock Resistance, points | 19 | |
16 to 18 |
Alloy Composition
Aluminum (Al), % | 0.020 to 0.050 | |
0 to 0.040 |
Carbon (C), % | 0 to 0.2 | |
0.080 to 0.15 |
Chromium (Cr), % | 0 to 0.3 | |
2.0 to 2.5 |
Copper (Cu), % | 0 to 0.7 | |
0 to 0.3 |
Iron (Fe), % | 95.2 to 98.9 | |
94.3 to 96.6 |
Manganese (Mn), % | 1.1 to 1.7 | |
0.4 to 0.8 |
Molybdenum (Mo), % | 0 to 0.1 | |
0.9 to 1.1 |
Nickel (Ni), % | 0 to 0.8 | |
0 to 0.3 |
Niobium (Nb), % | 0 to 0.050 | |
0 |
Nitrogen (N), % | 0 to 0.025 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.6 | |
0 to 0.5 |
Sulfur (S), % | 0 to 0.0050 | |
0 to 0.010 |
Titanium (Ti), % | 0 to 0.030 | |
0 |
Vanadium (V), % | 0 to 0.2 | |
0 |