MakeItFrom.com
Menu (ESC)

EN 1.8918 Steel vs. S31100 Stainless Steel

Both EN 1.8918 steel and S31100 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8918 steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
4.5
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Shear Strength, MPa 400
580
Tensile Strength: Ultimate (UTS), MPa 640
1000
Tensile Strength: Yield (Proof), MPa 490
710

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 46
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
16
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
3.1
Embodied Energy, MJ/kg 24
44
Embodied Water, L/kg 51
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 640
1240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
36
Strength to Weight: Bending, points 21
29
Thermal Diffusivity, mm2/s 12
4.2
Thermal Shock Resistance, points 19
28

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0 to 0.060
Chromium (Cr), % 0 to 0.3
25 to 27
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
63.6 to 69
Manganese (Mn), % 1.1 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.8
6.0 to 7.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0 to 0.25
Vanadium (V), % 0 to 0.2
0