MakeItFrom.com
Menu (ESC)

EN 1.8932 Steel vs. EN 1.5415 Steel

Both EN 1.8932 steel and EN 1.5415 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8932 steel and the bottom bar is EN 1.5415 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
24
Fatigue Strength, MPa 250
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 370
320
Tensile Strength: Ultimate (UTS), MPa 600
510
Tensile Strength: Yield (Proof), MPa 370
280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
2.3
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 24
20
Embodied Water, L/kg 50
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 370
210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.2
0.12 to 0.2
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 95.5 to 98.9
97.3 to 99.23
Manganese (Mn), % 1.0 to 1.7
0.4 to 0.9
Molybdenum (Mo), % 0 to 0.1
0.25 to 0.35
Nickel (Ni), % 0 to 1.0
0 to 0.3
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010
Vanadium (V), % 0 to 0.2
0