MakeItFrom.com
Menu (ESC)

EN 1.8932 Steel vs. S42300 Stainless Steel

Both EN 1.8932 steel and S42300 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8932 steel and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
9.1
Fatigue Strength, MPa 250
440
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 370
650
Tensile Strength: Ultimate (UTS), MPa 600
1100
Tensile Strength: Yield (Proof), MPa 370
850

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
750
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
9.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.2
Embodied Energy, MJ/kg 24
44
Embodied Water, L/kg 50
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
93
Resilience: Unit (Modulus of Resilience), kJ/m3 370
1840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
39
Strength to Weight: Bending, points 20
30
Thermal Diffusivity, mm2/s 11
6.8
Thermal Shock Resistance, points 17
40

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.2
0.27 to 0.32
Chromium (Cr), % 0 to 0.3
11 to 12
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 95.5 to 98.9
82 to 85.1
Manganese (Mn), % 1.0 to 1.7
1.0 to 1.4
Molybdenum (Mo), % 0 to 0.1
2.5 to 3.0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0 to 0.2
0.2 to 0.3