MakeItFrom.com
Menu (ESC)

EN 1.8945 Steel vs. C17500 Copper

EN 1.8945 steel belongs to the iron alloys classification, while C17500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8945 steel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16
6.0 to 30
Fatigue Strength, MPa 260
170 to 310
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
45
Shear Strength, MPa 350
200 to 520
Tensile Strength: Ultimate (UTS), MPa 580
310 to 860
Tensile Strength: Yield (Proof), MPa 390
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 420
220
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 42
200
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
60
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
4.7
Embodied Energy, MJ/kg 19
73
Embodied Water, L/kg 51
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 410
120 to 2390
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
9.7 to 27
Strength to Weight: Bending, points 20
11 to 23
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 17
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0.25 to 1.4
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0.2 to 0.6
95.6 to 97.2
Iron (Fe), % 95.1 to 99.5
0 to 0.1
Manganese (Mn), % 0 to 1.1
0
Nickel (Ni), % 0 to 0.7
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0.050 to 0.16
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5