MakeItFrom.com
Menu (ESC)

EN 1.8961 Steel vs. AISI 430 Stainless Steel

Both EN 1.8961 steel and AISI 430 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8961 steel and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
24
Fatigue Strength, MPa 150
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 270
320
Tensile Strength: Ultimate (UTS), MPa 430
500
Tensile Strength: Yield (Proof), MPa 220
260

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
870
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 45
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
8.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.1
Embodied Energy, MJ/kg 23
30
Embodied Water, L/kg 50
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 12
6.7
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Carbon (C), % 0 to 0.16
0 to 0.12
Chromium (Cr), % 0.35 to 0.85
16 to 18
Copper (Cu), % 0.2 to 0.6
0
Iron (Fe), % 96.1 to 99.3
79.1 to 84
Manganese (Mn), % 0.15 to 0.7
0 to 1.0
Nickel (Ni), % 0 to 0.7
0 to 0.75
Niobium (Nb), % 0 to 0.065
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0 to 0.035
0 to 0.030
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0 to 0.14
0