MakeItFrom.com
Menu (ESC)

EN 2.4608 Nickel vs. 6351 Aluminum

EN 2.4608 nickel belongs to the nickel alloys classification, while 6351 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4608 nickel and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
7.8 to 18
Fatigue Strength, MPa 200
79 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 410
84 to 200
Tensile Strength: Ultimate (UTS), MPa 620
140 to 310
Tensile Strength: Yield (Proof), MPa 270
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
180
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
46
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
150

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
65 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 20
14 to 32
Strength to Weight: Bending, points 19
22 to 38
Thermal Diffusivity, mm2/s 2.9
72
Thermal Shock Resistance, points 16
6.1 to 14

Alloy Composition

Aluminum (Al), % 0
96 to 98.5
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 11.4 to 23.8
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 2.0
0.4 to 0.8
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 47
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.7 to 1.5
0.7 to 1.3
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15