MakeItFrom.com
Menu (ESC)

EN 2.4632 Nickel vs. 295.0 Aluminum

EN 2.4632 nickel belongs to the nickel alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4632 nickel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 17
2.0 to 7.2
Fatigue Strength, MPa 430
44 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 770
180 to 230
Tensile Strength: Ultimate (UTS), MPa 1250
230 to 280
Tensile Strength: Yield (Proof), MPa 780
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1290
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 9.4
7.9
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 1570
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 42
21 to 26
Strength to Weight: Bending, points 31
27 to 32
Thermal Diffusivity, mm2/s 3.3
54
Thermal Shock Resistance, points 39
9.8 to 12

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
91.4 to 95.3
Boron (B), % 0 to 0.020
0
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 15 to 21
0
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 1.5
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 49 to 64
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.7 to 1.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.0 to 3.0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15