MakeItFrom.com
Menu (ESC)

EN 2.4632 Nickel vs. 7175 Aluminum

EN 2.4632 nickel belongs to the nickel alloys classification, while 7175 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4632 nickel and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17
3.8 to 5.9
Fatigue Strength, MPa 430
150 to 180
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 76
26
Shear Strength, MPa 770
290 to 330
Tensile Strength: Ultimate (UTS), MPa 1250
520 to 570
Tensile Strength: Yield (Proof), MPa 780
430 to 490

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1290
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 9.4
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
18 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1570
1310 to 1730
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 42
48 to 52
Strength to Weight: Bending, points 31
48 to 51
Thermal Diffusivity, mm2/s 3.3
53
Thermal Shock Resistance, points 39
23 to 25

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
88 to 91.4
Boron (B), % 0 to 0.020
0
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 18 to 21
0.18 to 0.28
Cobalt (Co), % 15 to 21
0
Copper (Cu), % 0 to 0.2
1.2 to 2.0
Iron (Fe), % 0 to 1.5
0 to 0.2
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 49 to 64
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.0 to 3.0
0 to 0.1
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15