MakeItFrom.com
Menu (ESC)

EN 2.4632 Nickel vs. AWS BNi-10

Both EN 2.4632 nickel and AWS BNi-10 are nickel alloys. They have 69% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is EN 2.4632 nickel and the bottom bar is AWS BNi-10.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 1250
600

Thermal Properties

Latent Heat of Fusion, J/g 320
330
Melting Completion (Liquidus), °C 1340
1110
Melting Onset (Solidus), °C 1290
970
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 12
11

Otherwise Unclassified Properties

Base Metal Price, % relative 75
80
Density, g/cm3 8.3
9.4
Embodied Carbon, kg CO2/kg material 9.4
11
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 350
230

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 23
21
Strength to Weight: Axial, points 42
18
Strength to Weight: Bending, points 31
17
Thermal Shock Resistance, points 39
19

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0 to 0.050
Boron (B), % 0 to 0.020
2.0 to 3.0
Carbon (C), % 0 to 0.13
0.4 to 0.55
Chromium (Cr), % 18 to 21
10 to 13
Cobalt (Co), % 15 to 21
0 to 0.1
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
2.5 to 4.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 49 to 64
57.2 to 67.1
Phosphorus (P), % 0 to 0.020
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
3.0 to 4.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 2.0 to 3.0
0 to 0.050
Tungsten (W), % 0
15 to 17
Zirconium (Zr), % 0 to 0.15
0 to 0.050
Residuals, % 0
0 to 0.5