MakeItFrom.com
Menu (ESC)

EN 2.4632 Nickel vs. S34565 Stainless Steel

EN 2.4632 nickel belongs to the nickel alloys classification, while S34565 stainless steel belongs to the iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4632 nickel and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 17
39
Fatigue Strength, MPa 430
400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 76
80
Shear Strength, MPa 770
610
Tensile Strength: Ultimate (UTS), MPa 1250
900
Tensile Strength: Yield (Proof), MPa 780
470

Thermal Properties

Latent Heat of Fusion, J/g 320
310
Maximum Temperature: Mechanical, °C 1010
1100
Melting Completion (Liquidus), °C 1340
1420
Melting Onset (Solidus), °C 1290
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 75
28
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 9.4
5.3
Embodied Energy, MJ/kg 130
73
Embodied Water, L/kg 350
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
300
Resilience: Unit (Modulus of Resilience), kJ/m3 1570
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 42
32
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 3.3
3.2
Thermal Shock Resistance, points 39
22

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0 to 0.13
0 to 0.030
Chromium (Cr), % 18 to 21
23 to 25
Cobalt (Co), % 15 to 21
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
43.2 to 51.6
Manganese (Mn), % 0 to 1.0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 49 to 64
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 2.0 to 3.0
0
Zirconium (Zr), % 0 to 0.15
0