MakeItFrom.com
Menu (ESC)

EN 2.4633 Nickel vs. 413.0 Aluminum

EN 2.4633 nickel belongs to the nickel alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4633 nickel and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 230
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Shear Strength, MPa 510
170
Tensile Strength: Ultimate (UTS), MPa 760
270
Tensile Strength: Yield (Proof), MPa 310
140

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1350
590
Melting Onset (Solidus), °C 1300
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 8.4
7.6
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 290
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 240
130
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 26
29
Strength to Weight: Bending, points 23
36
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 22
13

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
82.2 to 89
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 8.0 to 11
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.35
Nickel (Ni), % 58.8 to 65.9
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
11 to 13
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.010 to 0.1
0
Residuals, % 0
0 to 0.25