MakeItFrom.com
Menu (ESC)

EN 2.4633 Nickel vs. EN 1.4630 Stainless Steel

EN 2.4633 nickel belongs to the nickel alloys classification, while EN 1.4630 stainless steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4633 nickel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
23
Fatigue Strength, MPa 230
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 510
300
Tensile Strength: Ultimate (UTS), MPa 760
480
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1000
800
Melting Completion (Liquidus), °C 1350
1440
Melting Onset (Solidus), °C 1300
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 11
28
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.5
Embodied Energy, MJ/kg 120
36
Embodied Water, L/kg 290
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
92
Resilience: Unit (Modulus of Resilience), kJ/m3 240
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 2.9
7.5
Thermal Shock Resistance, points 22
17

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0 to 1.5
Carbon (C), % 0.15 to 0.25
0 to 0.030
Chromium (Cr), % 24 to 26
13 to 16
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 8.0 to 11
77.1 to 86.7
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 58.8 to 65.9
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.5
0.2 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0.1 to 0.2
0.15 to 0.8
Yttrium (Y), % 0.050 to 0.12
0
Zirconium (Zr), % 0.010 to 0.1
0