MakeItFrom.com
Menu (ESC)

EN 2.4633 Nickel vs. S41425 Stainless Steel

EN 2.4633 nickel belongs to the nickel alloys classification, while S41425 stainless steel belongs to the iron alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4633 nickel and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
17
Fatigue Strength, MPa 230
450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 510
570
Tensile Strength: Ultimate (UTS), MPa 760
920
Tensile Strength: Yield (Proof), MPa 310
750

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1000
810
Melting Completion (Liquidus), °C 1350
1450
Melting Onset (Solidus), °C 1300
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 50
13
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 8.4
2.9
Embodied Energy, MJ/kg 120
40
Embodied Water, L/kg 290
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
150
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1420
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
33
Strength to Weight: Bending, points 23
27
Thermal Diffusivity, mm2/s 2.9
4.4
Thermal Shock Resistance, points 22
33

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0
Carbon (C), % 0.15 to 0.25
0 to 0.050
Chromium (Cr), % 24 to 26
12 to 15
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 8.0 to 11
74 to 81.9
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 58.8 to 65.9
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zirconium (Zr), % 0.010 to 0.1
0