MakeItFrom.com
Menu (ESC)

EN 2.4642 Nickel vs. 2018 Aluminum

EN 2.4642 nickel belongs to the nickel alloys classification, while 2018 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4642 nickel and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
9.6
Fatigue Strength, MPa 200
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 450
270
Tensile Strength: Ultimate (UTS), MPa 670
420
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1010
220
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1320
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.3
3.1
Embodied Carbon, kg CO2/kg material 8.2
8.1
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
37
Resilience: Unit (Modulus of Resilience), kJ/m3 180
670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 23
38
Strength to Weight: Bending, points 21
41
Thermal Diffusivity, mm2/s 3.1
57
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.5
89.7 to 94.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.1
Copper (Cu), % 0 to 0.5
3.5 to 4.5
Iron (Fe), % 7.0 to 11
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 55.9 to 66
1.7 to 2.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15