MakeItFrom.com
Menu (ESC)

EN 2.4642 Nickel vs. 364.0 Aluminum

EN 2.4642 nickel belongs to the nickel alloys classification, while 364.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4642 nickel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34
7.5
Fatigue Strength, MPa 200
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 450
200
Tensile Strength: Ultimate (UTS), MPa 670
300
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 320
520
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1320
560
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 50
11
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
19
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 23
31
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 3.1
51
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0 to 0.5
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0.25 to 0.5
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 7.0 to 11
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 55.9 to 66
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15