MakeItFrom.com
Menu (ESC)

EN 2.4642 Nickel vs. 7108A Aluminum

EN 2.4642 nickel belongs to the nickel alloys classification, while 7108A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4642 nickel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
11 to 13
Fatigue Strength, MPa 200
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 450
210
Tensile Strength: Ultimate (UTS), MPa 670
350
Tensile Strength: Yield (Proof), MPa 270
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1320
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 180
610 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 23
33 to 34
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 3.1
59
Thermal Shock Resistance, points 18
15 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.5
91.6 to 94.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0 to 0.040
Copper (Cu), % 0 to 0.5
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 7.0 to 11
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0 to 0.5
0 to 0.050
Nickel (Ni), % 55.9 to 66
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15