MakeItFrom.com
Menu (ESC)

EN 2.4642 Nickel vs. AISI 444 Stainless Steel

EN 2.4642 nickel belongs to the nickel alloys classification, while AISI 444 stainless steel belongs to the iron alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4642 nickel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
23
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 450
300
Tensile Strength: Ultimate (UTS), MPa 670
470
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1010
930
Melting Completion (Liquidus), °C 1360
1460
Melting Onset (Solidus), °C 1320
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
23
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 50
15
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 120
47
Embodied Water, L/kg 290
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
95
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 3.1
6.2
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.050
0 to 0.025
Chromium (Cr), % 27 to 31
17.5 to 19.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 7.0 to 11
73.3 to 80.8
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 55.9 to 66
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8